2014年江蘇數(shù)學(xué)試卷(word版)(2)

江蘇高考數(shù)學(xué)
2014/6/8
16.(本小題滿分14分)
如圖,在三棱錐 中, ,E,F(xiàn)分zxxk別為棱 的中點(diǎn).已知 ,
求證: (1)直線 平面 ;
(2)平面 平面 .
17.(本小題滿分14分)
如圖,在平面直角坐標(biāo)系 中, 分別是橢圓 的左、右焦點(diǎn),頂點(diǎn) 的坐標(biāo)為 ,連結(jié) 并延長交橢圓于點(diǎn)A,過點(diǎn)A作 軸的垂線交橢圓于另一點(diǎn)C,連結(jié) .
(1)若點(diǎn)C的坐標(biāo)為 ,且 ,求橢圓的方程;
(2)若 求橢圓離心率e的值.
18.(本小題滿分16分)
如圖,為了保護(hù)河上古橋 ,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形學(xué)科網(wǎng)保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓.且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m. 經(jīng)測量,點(diǎn)A位于點(diǎn)O正北方向60m處, 點(diǎn)C位于點(diǎn)O正東方向170m處(OC為河岸), .
(1)求新橋BC的長;
(2)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最大?
19.(本小題滿分16分)
已知函數(shù) ,其中e是自然對數(shù)的底數(shù).
(1)證明: 是R上的偶函數(shù);
(2)若關(guān)于 的不等式 ≤ 在 上恒成立,學(xué)科網(wǎng)求實(shí)數(shù) 的取值范圍;
(3)已知正數(shù) 滿足:存在 ,使得 成立.試比較 與 的大小,并證明你的結(jié)論.
20.(本小題滿分16分)
設(shè)數(shù)列 的前 項(xiàng)和為 .若對任意正整數(shù) ,學(xué)科網(wǎng)總存在正整數(shù) ,使得 ,則稱 是“H數(shù)列”.
(1)若數(shù)列 的前n項(xiàng)和 ( N ),證明: 是“H數(shù)列”;
(2)設(shè) 是等差數(shù)列,其首項(xiàng) ,公差 .若 是“H數(shù)列”,求 的值;
(3)證明:對任意的等差數(shù)列 ,總存在兩個(gè)“H數(shù)列” 和 ,使得
( N )成立.