八上數(shù)學知識點總結(jié)

臨近期末了,中考網(wǎng)小編為大家整理了八上數(shù)學知識點,希望能對復(fù)習中的同學們有所幫助,供大家參考。

三角形知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

8.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

11.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形。

12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

一次函數(shù)

一.定義

1.在按某種規(guī)律變化的過程中,數(shù)值發(fā)生變化的量為變量,始終不變的是常量。

2.一般地,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么x是自變量,y是x的函數(shù).如果當x=a時y=b,那么b叫做當自變量的值為a時的函數(shù)值。

3.一般地,形如y=kx[k是常數(shù),k≠0]的函數(shù),叫做正比例函數(shù).其中k叫做比例系數(shù).[一個數(shù)字與一個自變量的積的形式]。

4.形如y=kx+b[k,b為常數(shù),k≠0]的函數(shù),叫做一次函數(shù)。

二.重點

1.自變量的取值范圍:

(1)整式型y=3x+1──全體實數(shù);

(2)分式型──使分母不為0;

(3)根式型──使被開方數(shù)非負;

(4)綜合型。

2.作函數(shù)圖象的一般步驟:

(1)列表;

(2)描點。

(3)連線。

0時,直線y=kx經(jīng)過第一三象限,y隨x的增大而增大;當k<0時,直線y=kx經(jīng)過第二四象限,y隨x的增大而減小。

實數(shù)知識點

一.定義

1.一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a叫做被開方數(shù)。

2.一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根或二次方根,求一個數(shù)a的平方根的運算,叫做開平方。

3.一般地,如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根或三次方根.求一個數(shù)的立方根的運算,叫做開立方。

4.任何一個有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式.任何有限小數(shù)或無限循環(huán)小數(shù)也都是有理數(shù)。

5.無限不循環(huán)小數(shù)又叫無理數(shù)。

6.有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)。

7.數(shù)軸上的點與實數(shù)一一對應(yīng).平面直角坐標系中與有序?qū)崝?shù)對之間也是一一對應(yīng)的。

二.重點

1.平方與開平方互為逆運算,

2.正數(shù)的平方根有兩個,它們互為相反數(shù),其中正的平方根就是這個數(shù)的算術(shù)平方根。

3.當被開方數(shù)的小數(shù)點向右每移動兩位,它的算術(shù)平方根的小數(shù)點就向右移動一位。

4.當被平方數(shù)小數(shù)點每向右移動三位,它的立方根小數(shù)點向右移動一位。

5.數(shù)a的相反數(shù)是-a[a為任意實數(shù)],一個正實數(shù)的絕對值是它本身,一個負實數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

三.注意

1.被開方數(shù)一定是非負數(shù)。

2.0,1的算術(shù)平方根是它本身;0的平方根是0,負數(shù)沒有平方根;正數(shù)的立方根是正數(shù),負數(shù)的立方根是負數(shù),0的立方根是0。

3.帶根號的無理數(shù)的整數(shù)倍或幾分之幾仍是無理數(shù);帶根號的數(shù)若開之后是有理數(shù)則是有理數(shù);任何一個有理數(shù)都能寫成分數(shù)的形式。

軸對稱

一.定義

1.如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線[成軸]對稱。

2.把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱.這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對應(yīng)點。

3.經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

4.有兩邊相等的三角形叫做等腰三角形。

5.三條邊都相等的三角形叫做等邊三角形。

二.重點

1.把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖形。

2.把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形關(guān)于這條軸對稱。

3.垂直平分線的性質(zhì):線段垂直平分線上的點與這條線段兩個端點的距離相等。

4.垂直平分線的判定:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

5.如何做對稱軸:如果兩個圖形成軸對稱,其對稱軸就是任何一對對應(yīng)點所連線段的垂直平分線.因此,我們只要找到一對再對應(yīng)點,作出連接它們的線段的垂直平分線就可以得到這個圖形的對稱軸。

同樣,對于軸對稱圖形,只要找到任意一組對應(yīng)點所連線段的垂直平分線,就得到此圖形的對稱軸。

6.軸對稱圖形的性質(zhì):對稱軸方向和位置發(fā)生變化時,得到的圖形的方向和位置也會發(fā)生變化。

由個平面圖形可以得到它關(guān)于一條直線成軸對稱的圖形,這個圖形與原圖形的形狀,大小完全相等。

八上數(shù)學知識點總結(jié)

下載Word文檔到電腦,方便收藏和打印~

下載Word文檔

帶你看藝考
藝考信息時光機

再創(chuàng)新高!2022全國高考報名人數(shù)出爐(附各省市2022高考人數(shù))

再創(chuàng)新高!2022全國高考報名人數(shù)出爐(附各省市2022高考人數(shù))
2022高考人數(shù)
2022高考2022高考人數(shù)2022/6/1

147所“低調(diào)且實力強勁”的高校學科!這些藝術(shù)類院校上榜!

147所“低調(diào)且實力強勁”的高校學科!這些藝術(shù)類院校上榜!
藝術(shù)類院校
2022藝考藝術(shù)類院校2022/6/1

大連理工大學城市學院2022年藝術(shù)類專業(yè)錄取規(guī)則

大連理工大學城市學院2022年藝術(shù)類專業(yè)錄取規(guī)則
大連理工大學城市學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則大連理工大學城市學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

遼寧師范大學海華學院2022年藝術(shù)類專業(yè)錄取規(guī)則

遼寧師范大學海華學院2022年藝術(shù)類專業(yè)錄取規(guī)則
遼寧師范大學海華學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則遼寧師范大學海華學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

大連理工大學城市學院2022年招生章程(含藝術(shù)類)

大連理工大學城市學院2022年招生章程(含藝術(shù)類)
大連理工大學城市學院2022年招生章程(含藝術(shù)類)
普通類招生章程大連理工大學城市學院2022年招生章程(含藝術(shù)類)2022/6/1

沈陽城市建設(shè)學院2022年藝術(shù)類專業(yè)錄取規(guī)則

沈陽城市建設(shè)學院2022年藝術(shù)類專業(yè)錄取規(guī)則
沈陽城市建設(shè)學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則沈陽城市建設(shè)學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

湖南科技大學瀟湘學院2022年全日制普通本科招生章程(含藝術(shù)類)

湖南科技大學瀟湘學院2022年全日制普通本科招生章程(含藝術(shù)類)
湖南科技大學瀟湘學院2022年全日制普通本科招生章程(含藝術(shù)類)
普通類招生章程湖南科技大學瀟湘學院2022年全日制普通本科招生章程(含藝術(shù)類)2022/6/1

湖南科技大學瀟湘學院2022年藝術(shù)類專業(yè)錄取規(guī)則

湖南科技大學瀟湘學院2022年藝術(shù)類專業(yè)錄取規(guī)則
湖南科技大學瀟湘學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則湖南科技大學瀟湘學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

遼寧師范大學海華學院2022年招生章程(含藝術(shù)類)

遼寧師范大學海華學院2022年招生章程(含藝術(shù)類)
遼寧師范大學海華學院2022年招生章程(含藝術(shù)類)
普通類招生章程遼寧師范大學海華學院2022年招生章程(含藝術(shù)類)2022/6/1

衡陽師范學院2022年藝術(shù)類專業(yè)錄取規(guī)則

衡陽師范學院2022年藝術(shù)類專業(yè)錄取規(guī)則
衡陽師范學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則衡陽師范學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

衡陽師范學院2022年本科招生章程(含藝術(shù)類)

衡陽師范學院2022年本科招生章程(含藝術(shù)類)
衡陽師范學院2022年本科招生章程(含藝術(shù)類)
普通類招生章程衡陽師范學院2022年本科招生章程(含藝術(shù)類)2022/6/1

沈陽工學院2022年藝術(shù)類專業(yè)錄取規(guī)則

沈陽工學院2022年藝術(shù)類專業(yè)錄取規(guī)則
沈陽工學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則沈陽工學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

遼寧何氏醫(yī)學院2022年藝術(shù)類專業(yè)錄取規(guī)則

遼寧何氏醫(yī)學院2022年藝術(shù)類專業(yè)錄取規(guī)則
遼寧何氏醫(yī)學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則遼寧何氏醫(yī)學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

沈陽城市建設(shè)學院2022年招生章程(含藝術(shù)類)

沈陽城市建設(shè)學院2022年招生章程(含藝術(shù)類)
沈陽城市建設(shè)學院2022年招生章程(含藝術(shù)類)
普通類招生章程沈陽城市建設(shè)學院2022年招生章程(含藝術(shù)類)2022/6/1

沈陽工學院2022年招生章程(含藝術(shù)類)

沈陽工學院2022年招生章程(含藝術(shù)類)
沈陽工學院2022年招生章程(含藝術(shù)類)
普通類招生章程沈陽工學院2022年招生章程(含藝術(shù)類)2022/6/1

大連科技學院2022年藝術(shù)類專業(yè)錄取規(guī)則

大連科技學院2022年藝術(shù)類專業(yè)錄取規(guī)則
大連科技學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則大連科技學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

遼寧何氏醫(yī)學院2022年招生章程(含藝術(shù)類)

遼寧何氏醫(yī)學院2022年招生章程(含藝術(shù)類)
遼寧何氏醫(yī)學院2022年招生章程(含藝術(shù)類)
普通類招生章程遼寧何氏醫(yī)學院2022年招生章程(含藝術(shù)類)2022/6/1

遼寧對外經(jīng)貿(mào)學院2022年藝術(shù)類專業(yè)錄取規(guī)則

遼寧對外經(jīng)貿(mào)學院2022年藝術(shù)類專業(yè)錄取規(guī)則
遼寧對外經(jīng)貿(mào)學院2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則遼寧對外經(jīng)貿(mào)學院2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

湖南工業(yè)大學2022年藝術(shù)類專業(yè)錄取規(guī)則

湖南工業(yè)大學2022年藝術(shù)類專業(yè)錄取規(guī)則
湖南工業(yè)大學2022年藝術(shù)類專業(yè)錄取規(guī)則
藝術(shù)類錄取原則湖南工業(yè)大學2022年藝術(shù)類專業(yè)錄取規(guī)則2022/6/1

大連科技學院2022年招生章程(含藝術(shù)類)

大連科技學院2022年招生章程(含藝術(shù)類)
大連科技學院2022年招生章程(含藝術(shù)類)
普通類招生章程大連科技學院2022年招生章程(含藝術(shù)類)2022/6/1
沒有更多了?去看看其它藝考內(nèi)容吧

藝考熱搜

藝考數(shù)據(jù)
藝考資源站

  • 藝考分數(shù)線
  • 藝考簡章