2014年安徽文科數(shù)學(xué)試卷(word版)(2)

安徽高考數(shù)學(xué)
2014/6/8
三.解答題:本大題共6小題,共75分.解答應(yīng)寫文字說明、證明過程或演算步驟.解答寫在答題卡上的指定區(qū)域內(nèi)
16.(本小題滿分12分)
設(shè) 的內(nèi)角 所對邊的長分別是 ,且 , 的面積為 ,求 與 的值.
17、(本小題滿分12分)
某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時)
(Ⅰ)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為: .估計該校學(xué)生每周平均體育運動時間超過4個小時的概率.
(Ⅲ)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有 的把握認為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
附:
18.(本小題滿分12分)
數(shù)列 滿足
(1) 證明:數(shù)列 是等差數(shù)列;
(2) 設(shè) ,求數(shù)列 的前 項和
19(本題滿分13分)
如圖,四棱錐 的底面邊長為8的正方形,四條側(cè)棱長均為 .點 分別是棱 上共面的四點,平面 平面 , 平面 .
(1)證明:
(2)若 ,求四邊形 的面積.
20(本小題滿分13分)
設(shè)函數(shù) ,其中
(1) 討論 在其定義域上的單調(diào)性;
(2) 當(dāng) 時,求 取得最大值和最小值時的 的值.
21(本小題滿分13分)
設(shè) , 分別是橢圓 : 的左、右焦點,過點 的直線交橢圓 于 兩點,
(1) 若 的周長為16,求 ;
(2) 若 ,求橢圓 的離心率.