三角函數(shù)積化和差公式及推導(dǎo)步驟

中考數(shù)學(xué)
2023/3/1
對于積化合差公式來說,首要的原則是,等號左邊的若異名,等號右邊全是sin,等號左邊同名,等號右邊全是cos,其次,右邊中間的和與差取決于左邊第二項(xiàng),若是cos,則是+,若是sin,則是-,最后記得sin*sin時要添上一個負(fù)號。
三角函數(shù)積化和差公式有哪些積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
積化和差公式推導(dǎo)過程sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb
兩式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)]...(1)
兩式相減得:cosasinb=1/2[sin(a+b)-sin(a-b)]...(2) cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb 兩式相加得: cosacosb=1/2[cos(a+b)+cos(a-b)]...(3)
兩式相減得:sinasinb=-1/2[cos(a+b)-cos(a-b)]...(4)
用(a+b)/2、(a-b)/2分別代替上面四式中的a,b 就可得到和差化積的四個式子。 如:(1)式可變?yōu)椋?/p>
sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2] 其它依次類推即可。