初二數(shù)學因式分解技巧有哪些要注意

中考數(shù)學
2023/4/20
因式分解與整式乘法是互逆的運算,是學好代數(shù)的基礎(chǔ)之一,希望同學給以足夠的重視。因式分解的每一步都必須是恒等變形,必須進行到每一個多項式因式都不能再分解為止。
初二數(shù)學因式分解方法提公因式法
如果一個多項式的各項都含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。
應用公式法
由于分解因式與整式乘法有著互逆的關(guān)系,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式。如,和的平方、差的平方
分組分解法
要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,并提出公因式a,把它后兩項分成一組,并提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)
十字相乘法(經(jīng)常使用)
對于mx +px+q形式的多項式,如果a×b=m,c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)
配方法
對于那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然后再利用平方差公式,就能將其因式分解。
初二數(shù)學因式分解注意事項①項數(shù)為三項;有兩項是兩個數(shù)的的平方和,這兩項的符號相同;有一項是這兩個數(shù)的積的兩倍。
②當多項式中有公因式時,應該先提出公因式,再用公式分解。
③完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
④分解因式,必須分解到每一個多項式因式都不能再分解為止。