初中三角函數(shù)降次公式

中考數(shù)學(xué)
2022/2/6
三角函數(shù)的降次公式是一個(gè)重要知識(shí)點(diǎn),下面總結(jié)了三角函數(shù)降次公式,希望能幫助大家學(xué)習(xí)三角函數(shù)。
sin^2(α)=(1-cos(2α))/2
cos^2(α)=(1+cos(2α))/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
降次公式推導(dǎo)三角函數(shù)的降冪公式是:cosα = (1+ cos2α) / 2
sinα=(1-cos2α) / 2
tanα=(1-cos2α)/(1+cos2α)
運(yùn)用二倍角公式就是升冪,將公式cos2α變形后可得到降冪公式:
cos2α=cosα-sinα=2cosα-1=1-2sinα
∴cosα=(1+cos2α)/2
sinα=(1-cos2α)/2
降冪公式,就是降低指數(shù)冪由2次變?yōu)?次的公式,可以減輕二次方的麻煩。
二倍角公式sin2α=2sinαcosα
cos2α=cosα-sinα=2cosα-1=1-2sinα
tan2α=2tanα/(1-tanα)
注意:(1)二倍角公式的作用在于用單角的三角函數(shù)來表達(dá)二倍角的三角函數(shù),它適用于二倍角與單角的三角函數(shù)之間的互化問題。
(2)二倍角公式為僅限于2是的二倍的形式,尤其是“倍角”的意義是相對(duì)的。
(3)二倍角公式是從兩角和的三角函數(shù)公式中,取兩角相等時(shí)推導(dǎo)出,記憶時(shí)可聯(lián)想相應(yīng)角的公式。