2022內(nèi)蒙古師范大學(xué)考研參考書目

考研綜合信息
2022/9/26
考研專業(yè)課通常是由招生院校自主命題,因此考生在備考時(shí)就要以招生院校公布的參考書目為準(zhǔn),以下是本文為大家整理的2022內(nèi)蒙古師范大學(xué)考研參考書目,希望對大家有所幫助。
601 高等數(shù)學(xué)
1. 考試科目
第一部分 高等數(shù)學(xué)
第二部分 常微分方程初步
2. 考試形式和試卷結(jié)構(gòu)
2.1 試卷滿分及考試時(shí)間
試卷滿分為 150 分,考試時(shí)間為 180 分鐘.
2.2 答卷方式
答題方式為閉卷、筆試.
2.3 答卷內(nèi)容與結(jié)構(gòu)
高等數(shù)學(xué) 約 85%
常微分方程初步 約 15%
2.4 試卷題型結(jié)構(gòu)
單項(xiàng)選擇題選題 8 小題,每小題 4 分,共 32 分
填空題 6 小題,每小題 4 分,共 24 分
解答題(包括證明題) 9 小題,共 94 分
3. 第一部分 《高等數(shù)學(xué)》考試內(nèi)容與要求
3.1 函數(shù)、極限、連續(xù)
3.1.1 考試內(nèi)容
函數(shù)的概念及表示法、函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)、基本初等函數(shù)的性質(zhì)及其圖形、初等函數(shù)、函數(shù)關(guān)系的建立。
數(shù)列極限與函數(shù)極限的定義及其性質(zhì)、函數(shù)的左極限和右極限、無窮小量和無窮大量的概念及其關(guān)系、無窮小量的性質(zhì)及無窮小量的比較、極限的四則運(yùn)算、極限存在的兩個(gè)準(zhǔn)則(單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則)、兩個(gè)重要極限:
函數(shù)連續(xù)的概念、函數(shù)間斷點(diǎn)的類型、初等函數(shù)的連續(xù)性、閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
3.1.2 考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系。
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。
5.了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念。
6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利
用兩個(gè)重要極限求極限的方法.
7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法.了解無窮大量
的概念及其與無窮小量的關(guān)系。
8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型。
9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。
3.2 一元函數(shù)微分學(xué)
3.2.1 考試內(nèi)容
導(dǎo)數(shù)和微分的概念、導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義、函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系、平面曲線的切線與法線、導(dǎo)數(shù)和微分的四則運(yùn)算、基本初等函數(shù)的導(dǎo)數(shù)、復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法、高階導(dǎo)數(shù)、一階微分形式的不變性、微分中值定理、洛必達(dá)(L'Hospital)法則、函數(shù)單調(diào)性的判別、函數(shù)的極值、函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線、函數(shù)圖形的描繪、函數(shù)的最大值與最小值。
3.2.2 考試要求
1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程。
2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)。
3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的高階導(dǎo)數(shù)。
4.了解微分的概念、導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分。
5.理解羅爾(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個(gè)定理的簡單應(yīng)用。
6.會(huì)用洛必達(dá)法則求極限。
7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用。
8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù).當(dāng)時(shí),的圖形是凹的;當(dāng)時(shí),的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線。
9.會(huì)描述簡單函數(shù)的圖形。
3.3 一元函數(shù)積分學(xué)
3.3.1 考試內(nèi)容
原函數(shù)和不定積分的概念、不定積分的基本性質(zhì)、基本積分公式、定積分的概21念和基本性質(zhì)、定積分中值定理、積分上限的函數(shù)及其導(dǎo)數(shù)、牛頓-萊布尼茨(NewtonLeibniz)公式、不定積分和定積分的換元積分法與分部積分法、反常(廣義)積分、定積分的應(yīng)用。
3.3.2 考試要求
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法。
2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式以及定積分的換元積分法和分部積分法。
3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡單的經(jīng)濟(jì)應(yīng)用問題。
4.了解反常積分的概念,會(huì)計(jì)算反常積分。
3.4 多元函數(shù)微積分學(xué)
3.4.1 考試內(nèi)容
多元函數(shù)的概念、二元函數(shù)的幾何意義、二元函數(shù)的極限與連續(xù)的概念、有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)、多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算、多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法、二階偏導(dǎo)數(shù)、全微分、多元函數(shù)的極值和條件極值、最大值和最小值、二重積分的概念及其基本性質(zhì)和計(jì)算、三重積分的概念及其基本性質(zhì)和計(jì)算。
3.4.2 考試要求
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。
2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。
3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡單多元函數(shù)的最大值和最小值,并會(huì)解決簡單的應(yīng)用問題。
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo));了解三重積分的概念及其基本性質(zhì)和計(jì)算,掌握三重積分的計(jì)算方法(直角坐標(biāo))。
3.5 無窮級(jí)數(shù)
3.5.1 考試內(nèi)容
常數(shù)項(xiàng)級(jí)數(shù)的收斂與發(fā)散的概念、收斂級(jí)數(shù)的和的概念、級(jí)數(shù)的基本性質(zhì)與收斂的必要條件、幾何級(jí)數(shù)與級(jí)數(shù)及其收斂性、正項(xiàng)級(jí)數(shù)收斂性的判別法、任意項(xiàng)級(jí)數(shù)的絕對收斂與條件收斂、交錯(cuò)級(jí)數(shù)與萊布尼茨定理、冪級(jí)數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域、冪級(jí)數(shù)的和函數(shù)、冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)、簡單冪級(jí)數(shù)的和函數(shù)的求法、初等函數(shù)的冪級(jí)數(shù)展開式。
3.5.2 考試要求
1.了解級(jí)數(shù)的收斂與發(fā)散、收斂級(jí)數(shù)的和的概念。
2.了解級(jí)數(shù)的基本性質(zhì)及級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法。
3.了解任意項(xiàng)級(jí)數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系,了解交錯(cuò)級(jí)數(shù)的萊布尼茨判別法。
4.會(huì)求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域。
5.了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù)。
6.了解的麥克勞林(Maclaurin)展開式。
4. 第二部分 《常微分方程初步》考試內(nèi)容與要求
4.1 考試內(nèi)容
常微分方程的基本概念、變量可分離的微分方程、齊次微分方程、一階線性微
分方程、線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理、二階常系數(shù)齊次線性微分方程及
簡單的非齊次線性微分方程、微分方程的簡單應(yīng)用。
4.2 考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念。
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。
3.會(huì)解二階常系數(shù)齊次線性微分方程。
4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程。
5.會(huì)用微分方程求解簡單的應(yīng)用問題。
參考書目:《高等數(shù)學(xué)》上下冊(第六版),同濟(jì)大學(xué)應(yīng)用數(shù)學(xué)系,高等教育出版社,2007
注:點(diǎn)擊考試大綱查看參考書目詳細(xì)信息
附件.內(nèi)蒙古師范大學(xué)2022年碩士研究生初試考試大綱.pdf:http://yjsc.imnu.edu.cn/system/_content/dow048&wbfileid=6530256